Information in Competitive Markets

- In purely competitive markets all agents are fully informed about traded commodities and other aspects of the market.
- What about markets for medical services, or insurance, or used cars?

Asymmetric Information in Markets

- A doctor knows more about medical services than does the buyer.
- An insurance buyer knows more about his riskiness than does the seller.
- A used car's owner knows more about it than does a potential buyer.

Asymmetric Information in Markets

- Markets with one side orland the other imperfectly informed are markets with imperfect information.
- Imperfectly informed markets with one side better informed than the other are markets with asymmetric information.

Asymmetric Information in Markets

- In what ways can asymmetric information affect the functioning of a market?
-Four applications will be considered:
- adverse selection
- signaling
- moral hazard
- incentives contracting.

Adverse Selection

- Consider a used car market.
- Two types of cars; "lemons" and "peaches".
- Each lemon seller will accept \$1,000; a buyer will pay at most \$1,200.
- Each peach seller will accept \$2,000; a buyer will pay at most $\$ 2,400$.

Adverse Selection

- If every buyer can tell a peach from a lemon, then lemons sell for between \$1,000 and \$1,200, and peaches sell for between $\$ 2,000$ and $\$ 2,400$.
- Gains-to-trade are generated when buyers are well informed.

Adverse Selection

- Suppose no buyer can tell a peach from a lemon before buying.
\star What is the most a buyer will pay for any car?

Adverse Selection

- Let q be the fraction of peaches.
$\bullet 1-q$ is the fraction of lemons.
- Expected value to a buyer of any car is at most

$$
E V=\$ 1200(1-q)+\$ 2400 q .
$$

Adverse Selection

- Suppose EV > \$2000.
- Every seller can negotiate a price between \$2000 and \$EV (no matter if the car is a lemon or a peach).
- All sellers gain from being in the market.

Adverse Selection

- Suppose EV < \$2000.
\bullet A peach seller cannot negotiate a price above $\$ 2000$ and will exit the market.
- So all buyers know that remaining sellers own lemons only.
- Buyers will pay at most \$1200 and only lemons are sold.

Adverse Selection

- Hence "too many" lemons "crowd out" the peaches from the market.
- Gains-to-trade are reduced since no peaches are traded.
- The presence of the lemons inflicts an external cost on buyers and peach owners.

Adverse Selection

- How many lemons can be in the market without crowding out the peaches?
- Buyers will pay \$2000 for a car only if

$$
\begin{aligned}
& E V=\$ 1200(1-q)+\$ 2400 q \geq \$ 2000 \\
& \Rightarrow q \geq \frac{2}{3} .
\end{aligned}
$$

- So if over one-third of all cars are lemons, then only lemons are traded.

Adverse Selection

- A market equilibrium in which both types of cars are traded and cannot be distinguished by the buyers is a pooling equilibrium.
- A market equilibrium in which only one of the two types of cars is traded, or both are traded but can be distinguished by the buyers, is a separating equilibrium.

Adverse Selection

- What if there is more than two types of cars?
- Suppose that
- car quality is Uniformly distributed between $\$ 1000$ and \$2000
- any car that a seller values at $\$ x$ is
valued by a buyer at $\$(x+300)$.
- Which cars will be traded?

Adverse Selection

The expected value of any car to a buyer is $\$ 1500$ + \$300 = \$1800.

1000
1500
2000
Seller values
So sellers who value their cars at more than $\$ 1800$ exit the market.

Adverse Selection

The expected value of any remaining car to a buyer is $\$ 1400$ + \$300 = \$1700.

1000
 1400
 1800

Seller values
So now sellers who value their cars between $\$ 1700$ and $\$ 1800$ exit the market.

Adverse Selection

- Where does this unraveling of the market end?
>Let \mathbf{v}_{H} be the highest seller value of any car remaining in the market.
- The expected seller value of a car is

$$
\frac{1}{2} \times 1000+\frac{1}{2} \times v_{H} .
$$

Adverse Selection

-So a buyer will pay at most

$$
\frac{1}{2} \times 1000+\frac{1}{2} \times v_{H}+300 .
$$

- This must be the price which the seller of the highest value car remaining in the market will just accept; i.e.

$$
\frac{1}{2} \times 1000+\frac{1}{2} \times v_{H}+300=v_{H} .
$$

$$
\begin{gathered}
\text { Adverse Selection } \\
\frac{1}{2} \times 1000+\frac{1}{2} \times \mathbf{v}_{\mathbf{H}}+300=\mathbf{v}_{\mathbf{H}} \\
\Rightarrow \mathbf{v}_{\mathbf{H}}=\$ \mathbf{1 6 0 0}
\end{gathered}
$$

Adverse selection drives out all cars valued by sellers at more than $\$ 1600$.

Adverse Selection with Quality Choice

- Now each seller can choose the quality, or value, of her product.
- Two umbrellas; high-quality and lowquality.
- Which will be manufactured and sold?

Adverse Selection with Quality Choice

-Buyers value a high-quality umbrella at \$14 and a low-quality umbrella at \$8.

- Before buying, no buyer can tell quality.
- Marginal production cost of a highquality umbrella is $\mathbf{\$ 1 1 .}$
- Marginal production cost of a lowquality umbrella is $\mathbf{\$ 1 0}$.

Adverse Selection with Quality Choice

-Suppose every seller makes only highquality umbrellas.

- Every buyer pays \$14 and sellers’ profit per umbrella is \$14-\$11 = \$3.
- But then a seller can make low-quality umbrellas for which buyers still pay \$14, so increasing profit to \$14-\$10 = \$4.

Adverse Selection with Quality Choice

- There is no market equilibrium in which only high-quality umbrellas are traded.
\& Is there a market equilibrium in which only low-quality umbrellas are traded?

Adverse Selection with Quality Choice

- All sellers make only low-quality umbrellas.
- Buyers pay at most \$8 for an umbrella, while marginal production cost is $\mathbf{\$ 1 0}$.
- There is no market equilibrium in which only low-quality umbrellas are traded.

Adverse Selection with Quality Choice

- Now we know there is no market equilibrium in which only one type of umbrella is manufactured.
\diamond Is there an equilibrium in which both types of umbrella are manufactured?

Adverse Selection with Quality Choice

- A fraction q of sellers make highquality umbrellas; $0<q<1$.
- Buyers' expected value of an umbrella is

$$
E V=14 q+8(1-q)=8+6 q .
$$

- High-quality manufacturers must recover the manufacturing cost,

$$
\mathrm{EV}=8+6 q \geq 11 \Rightarrow q \geq 1 / 2 .
$$

Adverse Selection with Quality Choice

<So at least half of the sellers must make high-quality umbrellas for there to be a pooling market equilibrium.

- But then a high-quality seller can switch to making low-quality and increase profit by $\$ 1$ on each umbrella sold.

Adverse Selection with Quality Choice

-Since all sellers reason this way, the fraction of high-quality sellers will shrink towards zero -- but then buyers will pay only \$8.
-So there is no equilibrium in which both umbrella types are traded.

Adverse Selection with Quality Choice

- The market has no equilibrium
- with just one umbrella type traded
- with both umbrella types traded
- so the market has no equilibrium at all.
- Adverse selection has destroyed the entire market!

Moral Hazard

- If you have full car insurance are you more likely to leave your car unlocked?
- Moral hazard is a reaction to incentives to increase the risk of a loss
> and is a consequence of asymmetric information.

Moral Hazard

- If an insurer knows the exact risk from insuring an individual, then a contract specific to that person can be written.
- If all people look alike to the insurer, then one contract will be offered to all insurees; high-risk and low-risk types are then pooled, causing lowrisks to subsidize high-risks.

Moral Hazard

- Examples of efforts to avoid moral hazard by using signals are:
- higher life and medical insurance premiums for smokers or heavy drinkers of alcohol
- lower car insurance premiums for contracts for drivers with histories of safe driving.

